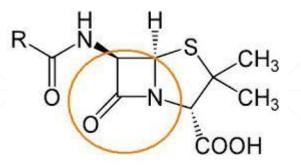
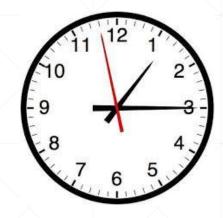
Continuous Infusion of Beta-Lactams in Critically III Patients


Presentation By: Courtney Montague, PharmD Candidate Preceptor: Shelley Winn, RPh

Presentation Outline

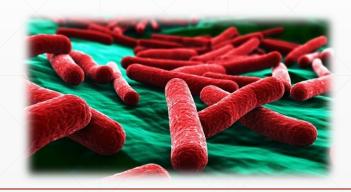
- Pharmacology of Beta-Lactams
- Current Problem
- Clinical Question
- Evidence
- Potential Advantages
- Drawbacks
- Applicability and Dosing
- Conclusion


Pharmacology of Beta-Lactams

How beta-lactams work

Mechanism of Action

- Inhibition of cell wall synthesis
- Beta lactam antibiotics target the penicillin-binding proteins or PBPs
 - Four-membered, nitrogen-containing beta-lactam ring at the core of their structure, which is key to the mode of action
- The beta-lactam ring portion of this group of antibiotics binds to these different PBPs, rendering them unable to perform their role in cell wall synthesis
- Classes of beta-lactams: penicillins, cephalosporins, carbapenems

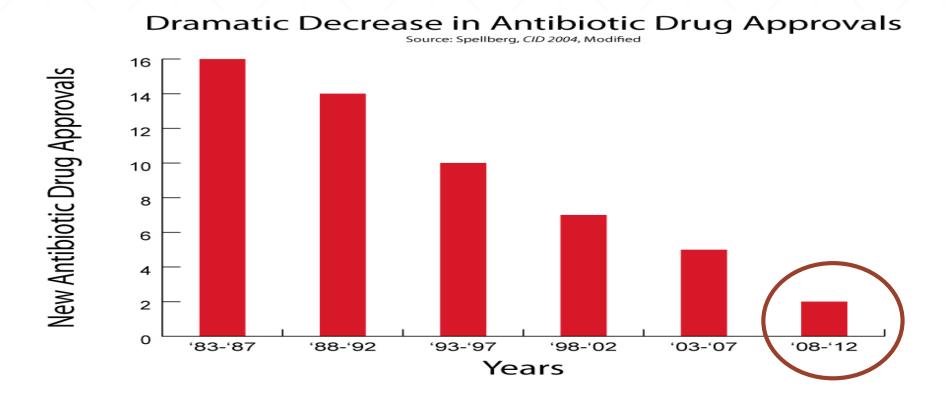


Activity

- Generally bactericidal
- Broad-spectrum: carbapenems, 2nd, 3rd and 4th generation cephalosporins
- Narrow spectrum: penicillin, 1st generation cephalosporins, monobactam
- ALL EXHIBIT TIME DEPENDENT KILLING
 - Duration that drug levels exceed the MIC relative to the dosing interval and the frequency of drug administration are important determinants of outcome for these drugs.
- A shorter dosing interval will increase the time that concentrations remain greater than the MIC of the infecting microorganism

Mechanisms of Resistance to Beta-Lactams

- Decreased penetration to the target site
 - Outer membrane on gram negative bacilli creates a permeability issue
- Alteration of the target site
 - Alterations of PBP's may alter binding affinity of the antibiotics
 - Ex: MRSA, pneumococci
- Inactivation by bacterial enzymes
 - Production of beta lactamase
 - Ex: SPICE bugs, ESBL bugs


Current Problem

Increasing resistance to antibiotics globally

Mounting Resistance

- Increasing number of resistant bugs showing up in patients
- Organisms of concern- gram negative (ESBL/SPICE)
 - Escherichia coli
 - Klebsiella spp.
 - Enterobacter spp.
 - Pseudomonas aeruginosa
- No resources being allocated to fight the problem
- Lack of drug development in antibiotics

Antibiotic Drug Approvals

Current Pipeline

Drug name	Development phase ³	Company	Drug class	Expected activity against resistant Gram-negative ESKAPE pathogens? ^a	Expected activity against a CDC urgent threat pathogen? ⁴	Potential indication(s)? ⁶
WCK 4873*	Phase 1	Wockhardt Ltd.	Second-generation ketolide	No	No	Bacterial infections
MGB-BP-3	Phase 1 ^{to}	MGB Biopharma Ltd.	DNA minor groove binder	No	Yes	C. difficile infections
OP0595 (RG6080)	Phase T ^a	Meiji Seika Pharma Co. Ltd./Fedora Pharmaceuticals Inc.	Beta-lactamase inhibitor	Possibly	Possibly	Bacterial infections
BAL30072	Phase 1	Basilea Pharmaceutica Ltd.	Monosulfactam	Yes	Yes	Multidrug-resistant Gram-negative bacterial infections*
CR53123	Phase 1	Crestone Inc.	synthetase (MetRS)	No	The	C. difficile infections
			inhibitor			
LC801-0371	Phase 1º	LegoChem Biosciences Inc.	Oxazolidinone	No	No	Bacterial infections
TD-1607	Phase 1	Therevance Biopharma	Głycopeptide- cephalosporin heterodimer	No	No	Acute bacterial skin and skin structure infections,* hospital-acquired pneumonia/ ventilator-associated bacterial pneumonia,* bacteremia*
WOK 2349*	Phase 1	Wockhardt Ltd.	Ruoroquinolone (WCK 771 pro-drug)	No	No	Bacterial infections
WCK 771*	Phase 1	Wockhardt Ltd.	Fluoroquinolone	No	No	Bacterial infections
idebactam+Celepime (WCK 5222) ^R	Phase 1	Wockhardt Ltd.	Novel beta-lactamase inhibitor+beta-lactam	Possibly	Possibly	Complicated urinary tract infections,* hospital-acquired bacterial pneumonia/ ventilutor-associated bacterial pneumonia*

Clinical Question

Clinical Question

Can giving beta-lactams over a continuous infusion in critically ill patients improve outcomes?

Rationale

- Provide maximal kill
 - Longer time above MIC= more bacteria killed
- Utilize optimal amount of drug
 - Increasing doses in these medications make no difference- time dependent
- Prolong use of drug in clinical practice
 - Reduce resistance by optimizing kill rates
- Overcome elevated MIC's
 - With longer exposure

Evidence

What the clinical trials are showing

Dulhunty et al. (2016)

- "Continuous infusion of beta-lactam antibiotics in severe sepsis: a multicenter double blind, randomized controlled trial"
- Prospective, double blind, randomized control trial
- P: Intensive care patients with severe sepsis (n=60)
- I: Continuous infusion of a beta-lactam (piperacillin-tazobactam OR meropenem OR ticarcillin-clavulanate)
- C: Intermittent dosing of a beta lactam
- O: Continuous infusion achieved higher plasma antibiotic concentrations than intermittent administration with improvement in clinical cure

Dulhunty et al- Eligibility Criteria

- All of the following criteria needed to be met:
- 1. Severe sepsis in the previous 48 hours
 - 1. Confirmed or suspected infection with new organ dysfunction
- 2. Planned commencement or commencement within the previous 24 hours of ticarcillin-clavulanate, piperacillin-tazobactam, or meropenem
- 3. Expected or actual ICU stay greater than 48 hours
- 4. >18 years of age
- 5. No allergies to the medications

Dulhunty et al Continued- "The Numbers"

	Continuous Infusion Group	Intermittent Dosing Group	P-Values
Plasma concentrations >MIC	82%	29%	P=.001
Clinical cure	70%	43%	P=.037
ICU free days	19.5	17	P=.14
Survival to hospital discharge	90%	80%	P=.47

Dulhunty et al- Limitations

- Differences in baseline characteristics
 - Intervention group was 6 years younger, 13% more males, 13% higher comorbidity, and 13% higher proportion of pre-ICU in the intervention group
- Small sample size
 - Potential confounding by unmeasured variables
- Only trough levels were taken
 - Time spent above the MIC could only be inferred
 - Could be sample timing errors

Paper #2

Falagas et al. (2013)

- "Clinical outcomes with extended or continuous versus short-term intravenous infusions of carbapenems and piperacillin-tazobactam: a systematic review and meta-analysis"
- Clinical question:
 - "Are the better PK/PD properties of carbapenems and piperacillin-tazobactam associated with lower mortality when the duration of infusion is longer?"
- Searched PubMed and Scopus for studies
 - Excluded if: 1) case reports/series including <10 patients, 2) reported on comparative outcomes of extended vs. short term duration but for different carbapenems in the 2 arms
- Fourteen studies were included in the meta-analysis- n=1229

	Extended or com	tinuous	Short-te	erm		Risk Ratio	Risk Ratio
Study or Subgroup	Deaths	Total	Deaths	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
1.1.1 Extended vs sh	nort-term						
Dow 2011	8	67	11	54	17.1%	0.59 [0.25, 1.35]	
Esterly 2010	12	42	7	29	11.7%	1.18 [0.53, 2.64]	
Itabashi 2007	1	18	9	24	10.9%	0.15 [0.02, 1.07]	
Lodise 2007	9	102	14	92	20.7%	0.58 [0.26, 1.28]	
Patel 2009	4	70	5	59	7.6%	0.67 [0.19, 2.40]	
Wang 2009	0	15	0	15		Not estimable	
Subtotal (95% CI)		314		273	68.0%	0.63 [0.41, 0.95]	•
Total events	34		46				
Heterogeneity: Chi ² =	4.54, df = 4 (P = 0.)	34); I [#] = 12	%				
Test for overall effect	: Z = 2.18 (P = 0.03)						
1.1.2 Continuous vs	short-term						
Grant 2002	0	47	5	51	7.4%	0.10 [0.01, 1.73]	
Lau 2006	1	130	3	132	4.2%	0.34 [0.04, 3.21]	
Lorente 2009	8	37	14	46	17.6%	0.71 [0.33, 1.51]	
Okimoto 2009	0	25	0	25		Not estimable	
Roberts 2010	0	8	0	8		Not estimable	
Sakka 2007	1	10	2	10	2.8%	0.50 [0.05, 4.67]	
Subtotal (95% CI)		257		272	32.0%	0.50 [0.26, 0.96]	•
Total events	10		24				
Heterogeneity: Chi ² =			6				
Test for overall effect	: Z = 2.07 (P = 0.04)						
Total (95% CI)		571		545	100.0%	0.59 [0.41, 0.83]	•
Total events	44		70				
Heterogeneity: Chi ² =	= 6.84, df = 8 (P = 0.1	55); I ² = 09	6				0.002 0.1 1 10 500
Fest for overall effect	I MARKET AND AND A MARKET AND A M						Against short-term Against extend/continuous
Test for subaroup dif	ferences: Chi# = 0.3	12. df = 1 (f	P = 0.57).	$ ^{2} = 0\%$			Against shoretering Against exterior on undous

Falagas et al.- Findings

- Mortality was lower in the continuous infusion groups compared to the short term
 - Risk ratio: 0.59, 95% confidence interval, 0.41-0.83
- Pneumonia patients who got continuous infusions had lower mortality than those with short term
 - Risk ratio: 0.50, 95% confidence interval, 0.26-0.96
- Data for other specific infections were not available
- Evidence is mainly from non-randomized studies
 - Can only really say at this point there is a trend to benefit
 - RCT's are warranted to confirm what is being shown

Paper #3

Roberts et al. (2016)

- "Continuous versus intermittent beta-lactam infusion in severe sepsis: a meta analysis of individual patient data from randomized trials"
- P: Critically ill patients with severe sepsis (n=632; 3 trails included)
- I: Continuous infusions of beta-lactam antibiotics (meropenem or piperacillintazobactam)
- C: Intermittent dosing of beta-lactam antibiotics
- O: Continuous infusions in this population is associated with decreased hospital mortality and increased clinical cure

Roberts et al. – Inclusion Criteria

- All of the following needed to be met to be included in the meta- analysis:
- 1. Were prospective
- 2. Enrolled patients with severe sepsis or septic shock
- 3. Randomized patients to receive either continuous infusions or intermittent dosing of a beta lactam at equivalent dosing in each treatment arm
- 4. Reported assessment of outcomes by a clinician blinded to treatment allocation

Roberts et al. – "The Numbers"

- Only showed significance in decreased mortality
 - 19.6% Continuous Infusion vs. 26.3% Intermittent (RR: 0.74) P=0.045

А

Study or Subgroup	CI Events To	II otal Events	Total	Weight	Risk Ratio M-H, Fixed, 95% Cl	Risk Ratio M-H, Fixed, 95% Cl
Abdul-Aziz 2016	20	70 28	70	33.3%	0.71 [0.45, 1.14]	
Dulhunty 2015	39 2	212 52	220	60.7%	0.78 [0.54, 1.13]	
Dulhunty 2013	2	30 5	30	5.9%	0.40 [0.08, 1.90]	
Total (95% CI)	:	312	320	100.0%	0.73 [0.55, 0.98]	•
Total events	61	85				
Heterogeneity: Chi ² =	0.69. df = 2 ((P = 0.71); I ² =	= 0%			0.1 0.2 0.5 1 2 5 10
Test for overall effect: $Z = 2.11$ (P = 0.03)					Favors CI Favors II	

Paper #4

Last paper!

Lodise, T., Lomaestro, B., and Drusano, G. (2007)

- "Piperacillin-Tazobactam for Pseudomonas aeruginosa infection: clinical implications of an extended infusion dosing strategy"
- Cohort study preformed from January 2000-June 2004 in Albany, New York
- P: Patients with Pseudomonas aeruginosa infection susceptible to piperacillintazobacam (Pip/Taz) (n= 194)
- I: Continuous infusion of Pip/Taz 3.375g IV q8H over 4 hours
- C: Intermittent dosing of Pip/Taz 3.375g IV q4-6H over 30 minutes
- O: 14 day mortality rate (12.2% vs. 31.6%; P= .04) and duration of hospital stay (21d vs. 38d; P=.02) was significantly lower in intervention group

Demographic or clinical characteristic	Extended Infusion (n = 102)	Intermittent Infusion (n = 92)	Р
Age, mean years ± SD	62.8 ± 18.3	63.9 ± 16.1	.6
Male sex	65 (63.7)	54 (58.7)	.5
Diabetes mellitus	28 (27.5)	28 (30.4)	.6
HIV Infection	1 (1.0)	2 (2.2)	.5
History of health care exposure	35 (34.3)	37 (40.2)	.4
Duration of stay prior to culture sample collection, median days (range)	7 (0-89)	6 (0-52)	.5
In ICU at onset of infection	63 (61.8)	63 (68.5)	.3
Consecutive days in ICU prior to onset of infection, median days (range)	3.5 (0-30)	2 (0-52)	.9
Receiving mechanical ventilation at culture sample collection	56 (54.9)	52 (56.5)	.8
Consecutive days receiving mechanical ventilation prior to culture sample collection, median days (range)	1 (0-59)	1 (0-48)	.8
APACHE II score at onset of infection, mean ± SD	15.3 (6.7)	16.2 (7.6)	.3
Duration of therapy, mean days ± SD	8.4 (4.4)	8.4 (4.5)	.9
Concornitant treatment with an aminoglycoside	21 (22.8)	26 (25.5)	.6
Concornitant treatment with a fluoroquinolone	5 (5.9)	10 (10.9)	.2
Primary source of culture sample			
Respiratory tract	55 (53.9)	48 (52.2)	.8
Urinary tract	21 (20.6)	12 (13.0)	.2
Skin or soft tissue	11 (10.8)	23 (25.0)	.009
Intravenous catheter	3 (2.9)	0 (0)	.1
Abdomen	4 (3.9)	1 (1.1)	.2
Other	8 (7.8)	8 (8.7)	.8

Potential Advantages

Why you should consider advocating for continuous infusions

Advantages

- Less susceptible pathogens
 - Bugs with higher MIC's but are still susceptible benefit from prolonged strategies
 - Obtain killing activity for longer periods of time
- Patients with altered pharmacokinetics
 - Critical illness, young, obese patients can result in altered drug clearance, changes in protein binding, differing volumes of distribution, etc.
 - Getting adequate serum levels can be challenging; higher doses for longer periods may be best

Advantages Continued

- Safety
 - No more toxicity risk than intermittent dosing
- Reduced selection for drug resistance
 - Prolonged infusions provide shorter periods of time where the levels go below the MIC
 - Less opportunity to acquire resistance or turn on resistance genes
- Cost benefit
 - Studies have shown in decreased drug costs, reduced length of stay, reduced complication costs, and labour costs
- Ease of administration- outpatient

Drawbacks

The caveats to continuous infusions

Drawbacks

- Logistical barriers
 - Continuous infusions require use of an IV pump for longer periods of time
 - Problematic if patients have limited IV access or lower levels of nursing care
 - Staffing is an issue and flushing has to occur at the end of the infusion for complete administration of drug
 - Prolonged infusions may also require higher IV catheter use with poses its own risks

Drawbacks Continued

- Compatibility
 - Administering other medications in the same IV line can cause compatibility issues
 - Shifting medication administration times may not be able to alleviate
- Stability
 - Drugs must be stable over the time they are administered
 - Ex: carbapenems are not stable at room temperature for long durations
- Clinical efficacy
 - At this point very little is known about applicability or correct dosing.
 - More work needs to be done in this area

Applicability and Dosing

Where can this be used?

Potential Indications

- Patients with structural lung disease
- Frequent healthcare exposure
- Prior repeated antibiotic exposures
- Intensive care patients/critically ill
 - Especially those with gram-negative rod infections with elevated but susceptible MICs
- Infections due to pathogens with high intrinsic resistance and predilection for developing acquired resistance during therapy

Dosing

	Creatinine Clearance (mL/min)	Dose	Dosing Interval	Infusion Time
Piperacillin- tazobactam	<20 >20 CRRT	3.375-4.5g for all	Q8H Q12H Q8H	4 hours for all
Meropenem	<10 10-24 25-49 >50 CRRT	0.5-1g 0.5-1g 1-2g 1-2g 1-2g	Q24H Q12H Q12H Q8H Q12H	3 hours for all

Dosing recommendations from clinical trials and expert opinion- may not be appropriate for all practice settings

Case Study: GR- HSN experience

- Patient developed ESBL intra-abdominal infection post bowel resection
- ESBL also grew in urine, respiratory secretions, and sacral area
- Given meropenem continuous infusion
 - Meropenem 500mg IV Q4H over 4 hours (max. stability time)
- Duration of meropenem continuous infusion was 7 days
- Patient's infection resolved and was able to return home a week later

Conclusion

Wrap up of what we've covered

Summary

- We have a growing bacterial problem with not much coming down the pipeline
 - We have to start getting creative
- Evidence shows that continuous infusions are at least equally effective and in some cases have mortality benefit over traditional intermittent measures
- Additional benefits of reducing resistance, cost savings, and administration benefits for outpatients
- Drawbacks include logistical barriers, compatibility, and poor stability
- No established indications as of yet but potential areas include critically ill patients
 - Need more robust studies in specific patient populations
- Optimal dosing hasn't been established- more studies needed

References

- 1. Boothe, D. Beta-Lactam Antibiotics. Auburn University. Merck Manual. Kenilworth NJ, USA. Published 2016. http://www.merckvetmanual.com/pharmacology/antibacterial-agents/%CE%B2-lactam-antibiotics. Accessed July 31, 2017.
- 2. Letourneau, A., Calderwood, S. Beta-lactam antibiotics: mechanism of action and resistance and adverse effects. UpToDate. Updated July 26, 2017. <u>https://www-uptodate-com.proxy.lib.uwaterloo.ca/contents/beta-lactam-antibiotics-mechanisms-of-action-and-resistance-and-adverse-effects?source=search_result&search=beta%20lactam%20antibiotics&selectedTitle=1~150#H29594957. Accessed July 31, 2017.</u>
- 3. PEW. Antibiotics currently in clinical development. The PEW Charitable Trusts. Published March 2016. Updated May 2016. <u>http://www.pewtrusts.org/~/media/assets/2016/05/antibiotics-currently-in-clinical-development.pdf?la=en</u>. Accessed July 31, 2017.
- 4. Moehring, R., Sarubbi, C. Prolonged infusions of beta-lactam antibiotics. UpToDate. Updated June 26, 2017. https://www-uptodate-com.proxy.lib.uwaterloo.ca/contents/prolonged-infusions-of-beta-lactamantibiotics?source=search_result&search=beta%20lactam%20antibiotics&selectedTitle=2~150#H95812384. Accessed July 31, 2017.
- 5. Dulhunty et al. Continuous infusion of beta-lactam antibiotics in severe sepsis: a multicenter double blind, randomized controlled trial. Clin Infect Dis. 2013 Jan;56(2):236-44. doi: 10.1093/cid/cis856. Epub 2012 Oct 16. https://www-ncbi-nlm-nih-gov.proxy.lib.uwaterloo.ca/pubmed/23074313. Accessed July 31, 2017.

References

- 6. Falagas et al. Clinical outcomes with extended or continuous versus short-term intravenous infusions of carbapenems and piperacillin-tazobactam: a systematic review and meta-analysis. Clin Infect Dis. 2013 Jan;56(2):272-82. doi: 10.1093/cid/cis857. Epub 2012 Oct 16. <u>https://www-ncbi-nlm-nih-gov.proxy.lib.uwaterloo.ca/pubmed/23074314?log\$=activity</u>. Accessed July 31, 2017.
- 7. Roberts et al. Continuous versus intermittent beta-lactam infusion in severe sepsis: a meta analysis of individual patient data from randomized trials. Am J Respir Crit Care Med. 2016 Sep 15;194(6):681-91. doi: 10.1164/rccm.201601-0024OC. <u>https://www-ncbi-nlm-nih-gov.proxy.lib.uwaterloo.ca/pubmed/?term=Continuous+versus+intermittent+betalactam+infusion+in+severe+sepsis*3A+a+meta+analysis+of+individual+patient+data+from+randomized+trials. Accessed July 31, 2017.</u>
- 8. Lodise, T., Lomaestro, B., and Drusano, G. Piperacillin-Tazobactam for Pseudomonas aeruginosa infection: clinical implications of an extended infusion dosing strategy. Clin Infect Dis. 2007 Feb 1;44(3):357-63. Epub 2007 Jan 2. <u>https://www-ncbi-nlm-nih-gov.proxy.lib.uwaterloo.ca/pubmed/?term=Piperacillin-</u> <u>Tazobactam+for+Pseudomonas+aeruginosa+infection%3A+clinical+implications+of+an+extended+infusion+dosin</u> <u>g+strategy</u>. Accessed July 31, 2017.
- 9. Bolus, J., and Brigg-Turner, R. Prolonged-infusion dosing of beta-lactam antibiotics. US Pharmacist. Jobson Publication. Publised April 16,2105. <u>https://www.uspharmacist.com/article/prolongedinfusion-dosing-of-betalactam-antibiotics</u>. Accessed July 31, 2017.

QUESTIONS?

Thank you for your time!