Diabetic Ketoacidosis In Children

JACQUELYN PETERS – PHARMD CANDIDATE 2016 – U OF W PHARMACY

Outline

Definitions and Pathophysiology of DKA

- Clinical Presentation/Diagnosis
- Treatment Process
- Monitoring in Hospital
- Complication Cerebral Edema
- Stepdown to SC Insulin

Objectives

- Understand the pathophysiology of DKA
- Recognize the signs and symptoms of DKA
- Recommend appropriate treatment of DKA in children
- Understand the reasoning behind monitoring in DKA and know what monitoring to recommend

CASE – D.K.

- 17 year-old female, wt: 80kg
- Good grades in high school
- Lives with father and twin sister
- Presenting with: vomiting x 8-10/day, Kussmaul respirations, acetone on breath & reported decreased LOC (but GCS on arrival = 15)

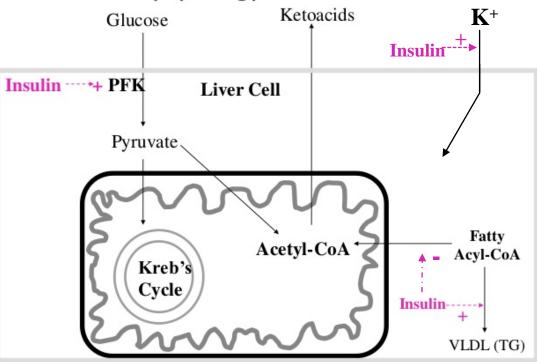
► PMH:

T1DM Dx at age 11 for which she has an insulin pump

Definitions:

- Acidemia: a state of being where the blood is too acidic (pH < 7.35)</p>
- Acidosis: a process occurring in the blood that decreases the pH (causing acidemia)
- Metabolic Acidosis: a process that decreases the concentration of HCO₃ in the blood, subsequently decreasing the pH
- Ketoacidosis: a form of metabolic acidosis that is the result of production of ketones
- Anion Gap: an artificial measure of the ion balance in the body, using the ions in the CHEM7, expressed using the following equation:

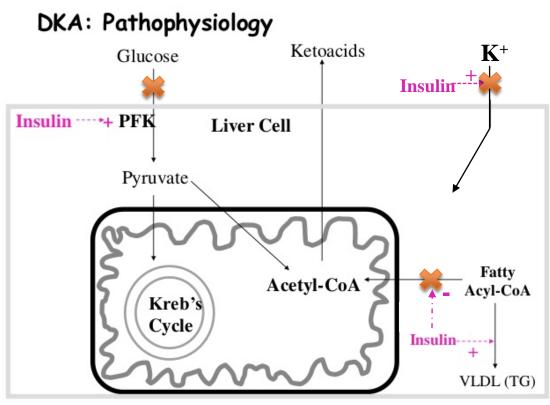
Anion Gap = $[Na] - ([Cl] + [HCO_3]) = 140 - (104 + 24) = 12 (\pm 2)$


▶ Used to diagnose and monitor progression of DKA

Pathophysiology of DKA - Normal

Insulin's actions on the cell:

- Promotes glucose entry into cell
- Decreases fatty acid oxidation
- Promotes K+ movement into cells
- Increased glycolysis & glycogen synthesis
- Decreases lipolysis in adipocytes, stimulates fatty acid synthesis, increases uptake of TG's into tissues
- Also promotes protein synthesis


DKA: Pathophysiology

http://image.slidesharecdn.com/diabeticketoacidosis-141104062217-conversion-gate01/95/diabetic-ketoacidosis-13-638.jpg?cb=1415082363

Pathophysiology of DKA

- In DKA, there's no insulin, resulting in the following:
 - Increased blood glucose levels
 - Increased fatty acid oxidation
 - Resulting in production of Ketone Bodies
 - Ketone Bodies release H⁺, which binds to HCO₃ and causes a metabolic acidosis
 - K⁺ movement into blood
 - ▶ K⁺ from cells exchanged for H⁺ in blood

Presentation/Signs&Symptoms of DKA

Older children/Adolescents:

- ► GU: Polyuria, polydipsia, nocturia, daytime enuresis, vaginal candidiasis
- CV: Tachycardia, hypovolemia, orthostatic hypotension, poor peripheral perfusion
- ▶ GI: Polyphagia, anorexia, **N/V**, abdominal pain, weight loss
- Resp: Acetone on breath, Kussmaul Respirations (the deep, rapid, sighing respirations that arise as an involuntary response to metabolic acidosis (<u>https://www.youtube.com/watch?v=TG0vpKae3Js</u>))
- Neuro: fatigue, lethargy, reduction in alertness, diminished sensation of pain, cerebral edema, coma
- Infants: (harder to diagnose not toilet trained or able to express thirst)
 - > Decreased energy/activity, irritability, weight loss, physical signs of dehydration
 - Severe Candida diaper rash

Diagnosis of DKA

Defined as:

- Hyperglycemia: blood glucose > 11 mmol/L
- Metabolic acidosis: venous pH <7.3 or plasma HCO₃ <15 mmol/L AND
- Ketosis: presence of ketones in the blood or urine
 - May also use beta-hydroxybutyrate concentration (> 3 mmol/L)

Classification of DKA

Categorized based on severity of DKA:

Severity	Blood pH	Blood [HCO ₃] (mmol/L)
Mild	7.2 – 7.3	10 – 15
Moderate	7.1 – 7.2	5 – 10
Severe	< 7.1	< 5

CASE – D.K. – Labs on Admission

ABG pH	6.91 (L)
ABG pCO ₂	11 (L)
ABG HCO ₃	2.2* (L)
ABG pO ₂	126 (H)

CHEM 7:

Na ⁺	140
K+	6.4 (H)
Cl-	102
CO ₂	< 5* (L)
SCr	117 (H)
Random Bl Gluc	38.6 (H)

* Essentially the same

CBC & Temp:	
Temperature	37.0 C
WBC	56.6 (H)
RBC	5.22
Hgb	155
Plt	317
Neut #	45.56 (H)

- Tox screen positive for ketones in blood
- Urinalysis revealed protein, glucose and ketones. Negative for nitrates and leukocyte esterase

CASE – D.K. – Diagnosis

- Diagnosis: All three components of the diagnosis present
 - ▶ BG = 38.6 mmol/L
 - ▶ pH = 6.91 → Severe DKA
 - Both blood and urine positive for ketones
- Other signs & symptoms:
 - Kussmaul respirations
 - Vomiting
 - Acetone on breath
 - Altered LOC

CASE – D.K. – Anion Gap

Calculate the Anion Gap for D.K.

- ► $AG = Na^{+} (Cl^{-} + HCO_{3}^{-})$
- ► AG = 140 (102 + 2.2)
- ► AG = 35.8

► Less HCO_3^- = metabolic acidosis

- Normal AG = 12, therefore there's an extra 23.8 negative charges causing the acidosis
- These charges are from the ketone bodies (ketoacidosis)

Treatment Process - Overview

- 1. Fluid administration to correct dehydration
- 2. AFTER 1-2hr, may start Insulin administration to correct hyperglycemia
 - Monitor BG levels and may add extra Dextrose IV PRN
- 3. Always monitor Lytes:
 - Add K+ IV PRN (usually needed), and consider Na+ levels
- 4. Monitor Anion Gap to assess resolution of metabolic acidosis

Goals

Correct the dehydration

- Gradually correct hyperosmolality and restore BG to normal
- Correct acidosis and reverse ketosis
- Monitor for complications of DKA and its treatment, (eg. cerebral edema)

AND

Identify and treat any root causes

1. Fluids

- Estimate fluid loss: approximately 70 mL/kg (range 30-100 mL/kg)
- 2. Unless hypotensive, start fluid replacement slowly, with isotonic fluids*, at **1.5x** the usual maintenance rate (or 2500mL/m²/day)
 - ▶ If hypotensive, give one bolus of 10mL/kg of isotonic fluids over 1hr
 - If necessary, may repeat once
 - *Usually 0.9% NaCl for the first 4-6 hrs (with K+ added see future slide)
- 3. After first 48 hrs, may increase to **2.0-2.1x** usual maintenance rate (or 3500mL/m²/day) to rehydrate fully
- 4. Do **NOT** give excess fluids within the first 24-36h, as this can lead to cerebral edema

2. Insulin

Start Insulin at a rate of <u>0.1 unit/kg/hr</u>

(0.05 units/kg/hr in younger kids with increased insulin sensitivity)

Hyperglycemia will correct before the acidosis

- Will likely need to give IV D5W or D10W using the two-bag system to offset the insulin
- Titrate serum glucose to maintain BG between 10-15 mmol/L

insulin

100 units/m

ON ON OD

Usually need D5W when BG reaches 17-14 mmol/L and need D10W if BG drops to < 8mmol/L</p>

2. Insulin

- Do NOT start insulin until 1-2 hrs after initiation of fluid replacement, as this can increase risk of cerebral edema
- Do NOT give bolus insulin
- Insulin can bind to the tubing/syringe. Flush the insulin through the tubing/syringe prior to starting the drip to prevent this
- Ketoacidosis should resolve within the first 2-4 hrs
 - If it does not, reassess patient & flush a new line
 - May just need increased rate of infusion

3. Electrolytes - Potassium

Estimate K⁺ loss: approximately 6-7 mmol/kg

- Will always have total body deficit of K⁺ but, because the hyperglycemia pulls water out of the cells & K⁺ follows, it may appear as high, normal or low serum K⁺
- Check baseline K⁺ levels and give KCI PRN as per the following:
 - Hyperkalemia hold K⁺ replacement until K⁺ levels fall and urine production is confirmed
 - Normokalemia give K⁺ when <u>starting insulin</u> (usual starting dose = 40 mmol/L added to the isotonic fluids once insulin is started, not before)
 - Hypokalemia K* treatment should start immediately, and insulin treatment should be delayed until K* is normalized
 - Max K⁺ IV rate: 0.5 mmol/kg/hr monitor hourly and adjust PRN

3. Electrolytes - Other

Sodium: levels can vary widely in DKA patients

- Estimate Na⁺ loss (approximately 5-13 mmol/kg) & check baseline Na⁺ levels
- Fluids and insulin will cause water to move intracellularly, thereby increasing serum Na⁺ concentration monitor levels to ensure only gradual rise in Na⁺
- Failure to rise may indicate early signs of cerebral edema consider increasing Na⁺ concentration in fluids and decrease rate of administration

<u>Phosphate</u>: replacement NOT necessary OR recommended

May induce hypocalcaemia and hypomagnesemia – and any deficit will be replaced once patient resumes eating

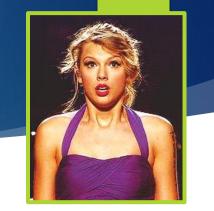
Bicarbonate: do NOT use sodium bicarbonate to directly replace bicarb

Many side effects – including cerebral edema

CASE – D.K. – Treatment

- ► HPI: dad mentioned that D.K. has changed her diet recently
 - Has been only eating meat and occasionally milk so she didn't have to count carbs – over last few months
- MD Dx: Diabetic Ketoacidosis
- Treatment/Labs/Monitoring ordered:
 - Started Insulin drip at 0.1 units/kg/hr (8 units/hr based on wt= 80kg)
 - Fluids started
 - ABG, lytes, glucose Q2h; POC BG Q1h; BUN, SCr and CBC in AM
 - Cover for infection with Ceftriaxone 2 g IV Q24hr

4. Metabolic Acidosis (Monitoring)


Ketoacidosis should resolve within the first 2-4h of administration of insulin

> Anion Gap (AG) should be monitored to indicate level of recovery

- Insulin: prevents further production of KB's and promotes metabolism of current KB's
- Rehydration: improves renal perfusion and promotes excretion of current KB's
- Regeneration of HCO₃⁻ is usually delayed by high CI- levels in the IV fluids, therefore may develop a hyperchloremic metabolic acidosis (allows time for kidney to make more HCO₃⁻)

CASE – D.K. – Monitoring AG

Date/Time	AG ion concentrations*	Calculated AG
July 6		
2148h	132 - (102+2.4)	= 27.6
2353h	141 – (112+2.2)	= 26.8
July 7		
0208h	137 – (111+2.6)	= 23.4
0415h	137 – (115+3.4)	= 18.6
0635h	138 – (116+5.0)	= 17.0
0820h	140 – (118+6.8)	= 15.2
1031h	139 – (117+9.6)	= 12.4
1230h	139 – (116+10.8§)	= 12.2§

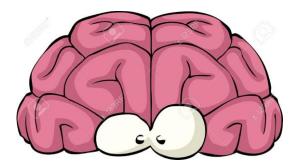
*Reminder: AG equation $AG = Na^{+} - (Cl^{-} + HCO_{3}^{-})$ = 140 - (104 + 24) $= 12 (\pm 2) (normal)$

[§]Notice the anion gap has resolved, but HCO₃ levels are still not normalized, hence the use of AG to monitor resolution of acidosis as opposed to bicarb levels

Monitoring in DKA

- Obtain baseline values of all the following values
- Vitals Hourly: HR, BP, RR, O₂ sat, and ECG (for hyper/hypokalemia)
- Bedside BG levels hourly for initial 4-6hrs, or until dextrose added to IV, then Q2h (and 1h after any changes to insulin dose)
- Blood gas, lytes, urea, urine ketones, serum osmolality Q1h for first 3-4hrs, then Q2h – once appropriate, may decrease frequency to Q4-6h
- Neurovitals and presence of headache (HA) hourly to monitor for cerebral edema
- Accurate Ins/Outs Q1hr in ICU, and Q2-4hrs on peds
- Can recommend use of BCCH monitoring form (next slide)

BC Children's Hospital Monitoring Form


BCCH ENDOCRINOLOGY & DIABETES UNIT DIABETIC KETOACIDOSIS FLOWSHEET

DATE:	TIME:						
HEART RATE							
RESPIRATORY RATE							
BLOOD PRESSURE			2				
GLASGOW COMA SCALE							
NEURO V DON	IE?						
BLOOD	METER						
GLUCOSE	LAB						
URINE KETON	ES .			-			
NURSE'S INIT	IALS						2
CAPILLARY PH							2
BICARBONATE:	CAPILLARY						
HCO₃ ⁻	VENOUS						
BASE DEFICIT							
SODIUM: NA*							
POTASSIUM: K							
CHLORIDE: CL							
ANION GAP: [NA ⁺ + K ⁺ - CL ⁻ - HCO ₃ ⁻]					 	 	
β-Hydroxybutyrate							

Cerebral Edema

Presentation:

- ▶ HA, irritability, decreasing pulse, increasing BP, decreased LOC
- Treatment:
 - Raise head of the bed to 30°, decrease fluids to regular maintenance levels
 - Give one of the following:
 - ▶ Hypertonic saline (3%), at 5-10 ml/kg IV over 30 min
 - ▶ 0.25-1.0 g/kg mannitol IV over 20 min
- Arrange for head CT when stable

SubQ Stepdown of Insulin

- Insulin infusion should continue until patient meets the following conditions:
 - 1. Serum anion gap/beta-hydroxybutyrate normal on 2 successive occasions
 - 2. Venous pH > 7.3 OR serum HCO3 > 15mmol/L
 - 3. Blood glucose < 11.1 mmol/L
 - 4. Tolerating oral intake
 - If meet these criteria, can restart subcutaneous insulin
- First SubQ injection should be given based on the onset of action of the insulin: (most convenient when timed just prior to a meal)
 - Rapid-acting Insulin: wait 15 minutes after SC dose before d/c infusion
 - Short-acting Insulin: wait 30-60 min after SC dose before d/c infusion

CASE – D.K. - Discharge

- In ICU for 48h, then moved to Pediatrics
- Given 3% NS for cerebral protection
- No S/Sx of cerebral edema

- ► ABG: pH:7.46; pCO₂:26; pO₂:109; /HCO₃:18.5 (L)
- $\succ CHEM7: (Na^+) \frac{140}{(K^+)4.0} | (CI^-) \frac{111}{(HCO_3^-)18.5} | (BUN) \frac{n}{a} (SCr) \frac{45}{45} < (GIU) \frac{4.8}{4.8}$
 - Anion Gap: 140 (111+18.5) = 10.5 (within normal range)

Consider Etiology

Not covered in this presentation, but very important!

- DKA is most often seen in young children and teenaged females (Why?)
 - Young children often first presentation of T1DM
 - Teen girls inadvertent/intentional omission of insulin dose, OR eating disorders, OR unstable family circumstances (all increase risk of DKA)
- Therefore always consider psychological impact of T1DM on lifestyle of patient and educate about the importance of insulin whenever possible

Helpful Sites

- MedCRAM Acid/base explained clearly: <u>https://www.youtube.com/watch?v=4wMEMhvrQxE&list=PLBD832B100067ECFF</u>
- MedCRAM DKA explained clearly: <u>https://www.youtube.com/watch?v=ylc2XFNLhm8</u>
- BC Children's Hospital DKA protocols: <u>http://www.bcchildrens.ca/health-professionals/clinical-resources/endocrinology-diabetes/dka-protocol</u>
- All guidelines were fairly comprehensive, but an AAFP article by D Westerberg had very helpful flowcharts for treatment in both adults and children: <u>http://www.aafp.org/afp/2013/0301/p337.pdf</u>

References

- 1. BC Children's Hospital. DKA protocol. Provincial Health Services Authority. http://www.bcchildrens.ca/health-professionals/clinicalresources/endocrinology-diabetes/dka-protocol. Accessed August 3, 2016.
- 2. CHEO Diabetes Team. Diabetic Ketoacidosis Guidelines for Champlain LHIN use. Ottawa: CHEO ED Outreach; October 2014. Accessed July 27, 2016.
- 3. Jeha GS, Haymond MW. Cerebral edema in children with diabetic ketoacidosis. UpToDate; June 2016. Accessed July 15, 2016.
- 4. Jeha GS, Haymond MW. Clinical features and diagnosis of diabetic ketoacidosis in children. UpToDate; June 2016. Accessed July 10, 2016.
- 5. Jeha GS, Haymond MW. Treatment and complications of diabetic ketoacidosis in children. UpToDate; July 2016. Accessed July 10, 2016.
- 6. Edge JA. BSPED Recommended Guideline for the Management of Children and Young People under the age of 18 years with Diabetic Ketoacidosis, (2015). http://www.bsped.org.uk/clinical/docs/DKAGuideline.pdf. Accessed August 11, 2016.
- 7. MEDCRAMvideos. Medical acid base explained clearly. YouTube; April 28, 2012.
- 8. Metzger DL. Diabetic Ketoacidosis in children and adolescents: An update and revised treatment protocol. BC Medical Journal. 2010;52(1):24–31. http://www.bcmj.org/sites/default/files/BCMJ_52Vol1_ketoacitosis-core.pdf. Accessed August 10, 2016.
- 9. Wherrett D, Huot C, Mitchell B, Pacaud D. Type 1 Diabetes in Children and Adolescents. Canadian Journal of Diabetes. 2013;37:S153–S162. http://www.canadianjournalofdiabetes.com/article/S1499-2671(13)00043-9/pdf. Accessed July 10, 2016.
- 10. Wolfsdorf J, Glaser N, Sperling MA. Diabetic Ketoacidosis in infants, children, and adolescents: A consensus statement from the American diabetes association. *Diabetes Care*. 2006;29(5):1150–1159. doi:10.2337/dc06-9909. http://care.diabetesjournals.org/content/diacare/29/5/1150.full.pdf. Accessed August 10, 2016.
- 11. Wolfsdorf JI, Allgrove J, Craig ME, et al. Diabetic ketoacidosis and hyperglycemic hyperosmolar state. *Pediatric Diabetes*. 2014;15(S20):154–179. doi:10.1111/pedi.12165. http://c.ymcdn.com/sites/www.ispad.org/resource/resmgr/Docs/CPCG_2014_CHAP_11.pdf. Accessed August 10, 2016.

Thank You!

Any Questions?

