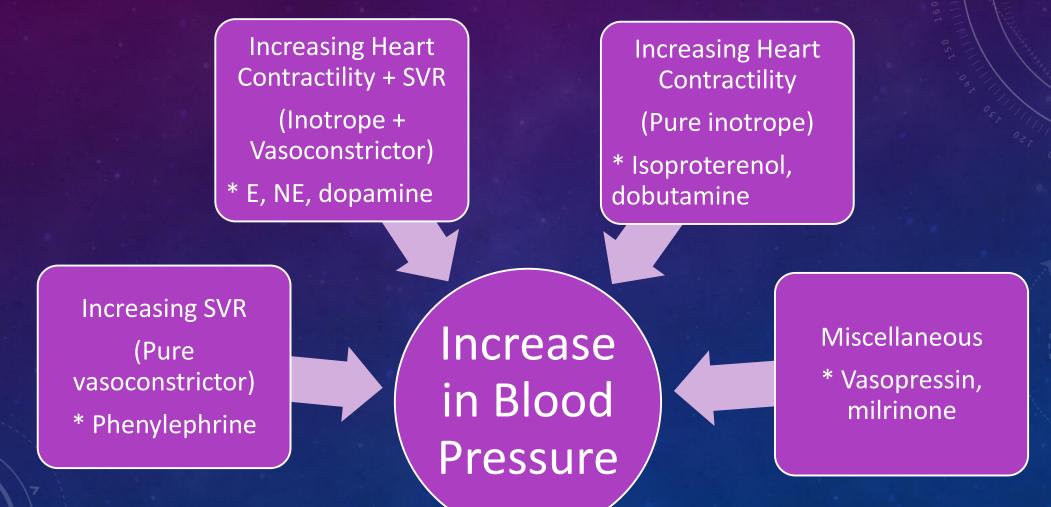
VASOPRESSORS AND INOTROPES

COMMUNITY OF PRACTICE ASSIGNMENT PRESENTED BY JONATHAN S.G. GBEDEMAH PHARM D. CANDIDATE, 2017 SUPERVISED BY PRECEPTOR SARAH LANDRY INTENSIVE CARE UNIT (ICU)

WHAT ARE VASOPRESSORS AND INOTROPES


Definitions

- Vasopressors: Anti-hypotensive agents that cause vasoconstriction leading to increased systemic or pulmonary vascular resistance (SVR or PVR)
- Inotropes: Agents that alter the *contractility* and *rate* of the heart
- Chronotropes: Agents that alter the *rate* at which the heart beats

IN WHICH SITUATIONS DO WE USE VASOPRESSORS AND INOTROPES?

- Shock and severe hypotension
- Symptomatic bradycardia
- Low cardiac output (CO)
- Heart block
- Bradyarrhythmia (i.e. TdP)
- Peri-operatively

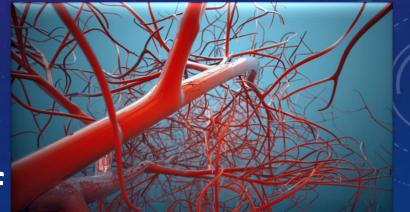
INOTROPES, VASOPRESSORS AND THEIR EFFECTS

EXAMPLES OF INOTROPES AND VASOPRESSORS

- Epinephrine
- Norepinephrine
- Dobutamine
- Dopamine
- Isoproterenol $\beta_1 = \beta_2$
- Phenylephrine α_1 only
- Vasopressin (ADH) $V_1 = V_2$
- Phosphodiesterase inhibitors (PDE₃I) N/A

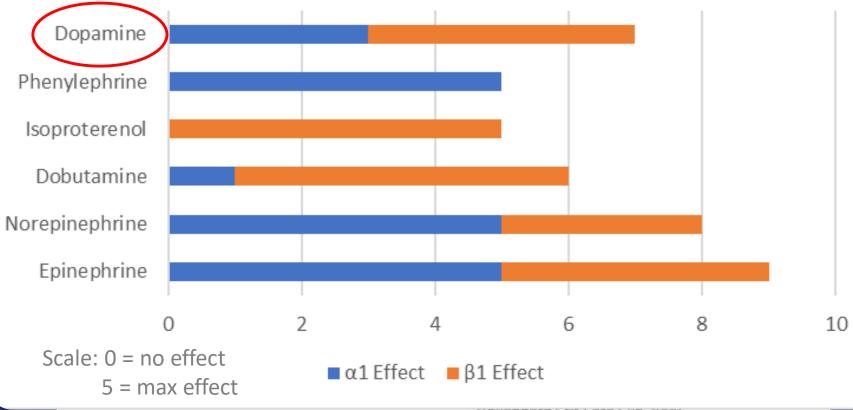
- $\alpha_1 > \beta_1 > \beta_2$ • $\alpha_1 > \beta_1 > \beta_2$ • $\beta_1 > \beta_2 > \alpha_1$
- DA > β_1 > α_1 > β_2

HOW DO INOTROPES AND VASOPRESSORS WORK?

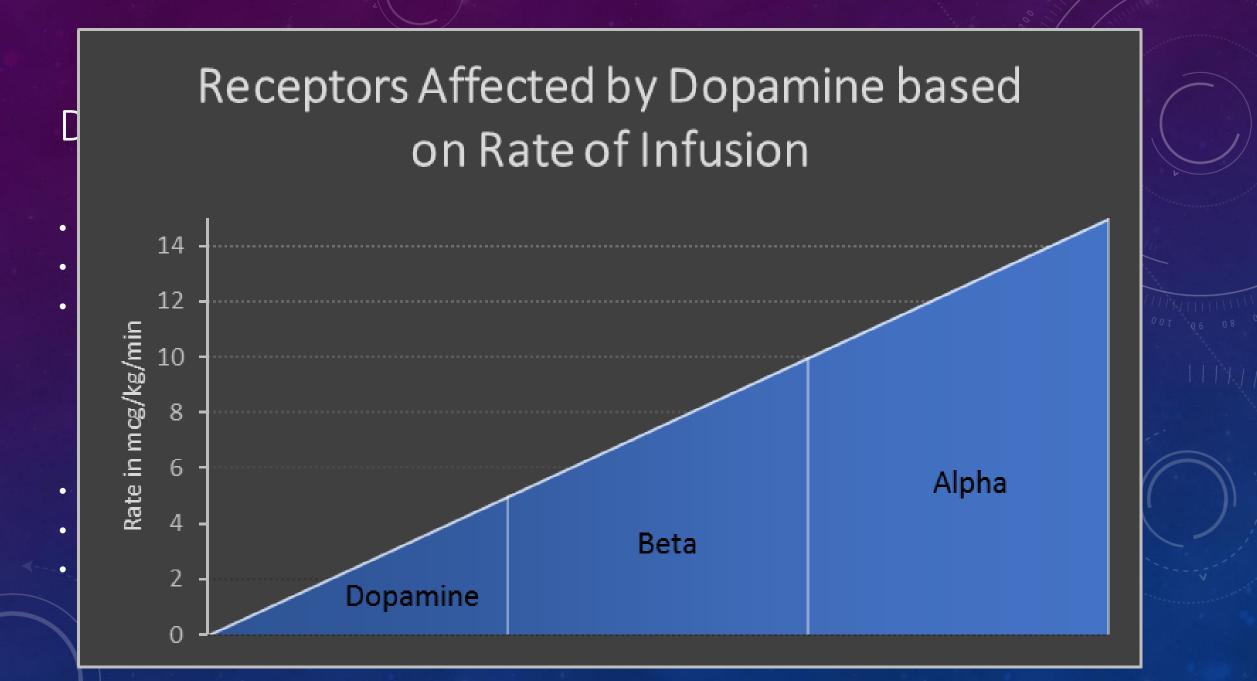

Inotropes and vasopressors act on receptors:

- α_1 Located in the vascular smooth muscle
 - Stimulation results in vasoconstriction and increased SVR
- α_2 Located on sympathetic neurons, platelets, and pancreatic β -cells
- β_1 Located (mostly) in cardiac tissue
 - Stimulation results in increased cardiac contraction and heart rate
- β_2 Located in the vascular smooth muscle
 - Stimulation causes smooth muscle relaxation and vasodilation

Based on this information, which of might we target for treatment of hypotension?

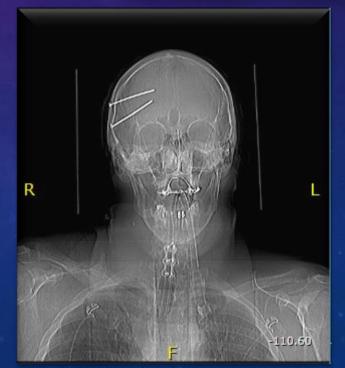

INOTROPE AND VASOPRESSOR FORMULAS

Cardiac Output (CO) = Stroke Volume (SV) $_{x}$ Heart Rate (HR)


How is CO related to inotropes and vasopressors?

- Pure stimulation α_1 reduces CO
- β_1 increases contractility = more blood pumping out = increased stroke volume
- β_1 also increases HR
- HR and SV increasing means *CO also increases*

Magnitude of Effect of Inotropes and Vasopressors on Alpha and Beta Receptors


Hollenberg Crit Care Clin 2009

CASES 1.0 AND 1.5

 See Student Rounds Presentations May to June 2017

CASE 2.0

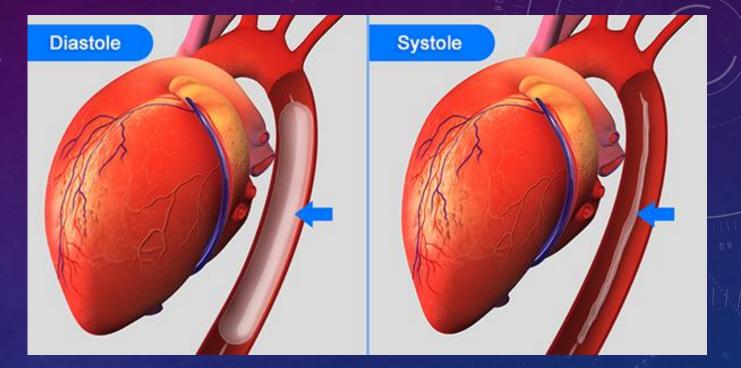
- 64-year old female
 - Admitting diagnosis: ACS
 - PMH: T2DM, HTN, CAD
 - Refuses to take anti-platelets and beta blockers
 - HPI: Ongoing chest pain off/on for 2 days, troponin 1.5, RBBB, non-specific ST changes, K+ 5.1, SCr 61
 - Unremarkable social and family history

- Patient underwent angiogram after initial refusal
 - Underwent asystolic arrest

Land and the second second	
1 Line	

MANAGEMENT OF SHOCK

- How do we manage a shock patient?
- We give them the *VIP* treatment
 - Ventilate (oxygen administration)
 - Infuse (fluid resuscitate)
 - **P**ump (vasoactive/inotropic agents)
- Vasoactive agents are given if fluid resuscitation is not effective
 - May be administered during fluid resuscitation as well



SELECT TREATMENT ALGORITHMS

- Asystolic Arrest
 - 1st line CPR
 - 1st line Epinephrine every 5 minutes
 - Vasopressin shows no benefit over epinephrine
 - Atropine + epinephrine shows benefit for return of spontaneous circulation

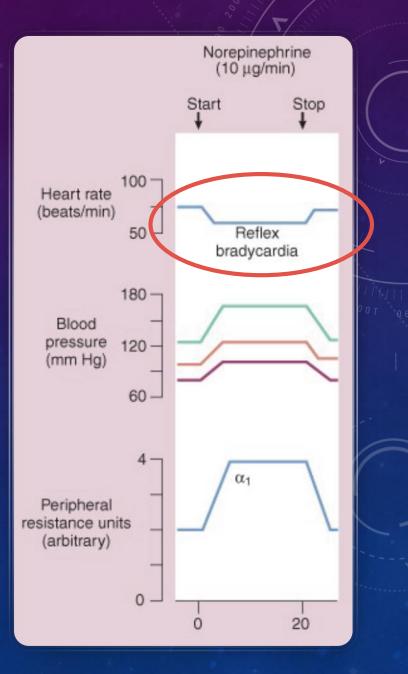
- Patient received:
 - Prompt CPR \checkmark
 - Epinephrine and atropine \checkmark
 - Aortic balloon pump
 - Plus IV heparin
 - Dobutamine $(\beta_1 > \beta_2 > \alpha_1)$ infusion
 - Grade 4 LV dysfunction present
 - Ejection fraction of approximately 20%

- Patient underwent subsequent CABG x 3
 - Was admitted to ICU post-OR
 - Intra-aortal balloon pump still in place
- Inotropes and vasopressors post-OR:
 - Epinephrine $(\alpha_1 > \beta_1 > \beta_2)$
 - Norepinephrine $(\alpha_1 > \beta_1 > \beta_2)$
 - Dobutamine $(\beta_1 > \beta_2 > \alpha_1)$
- Ventilated

- Patient became oliguric and SCr increased to 372 μmol/L
- Dialysis required
 - Hemodynamically unstable; likely unable to tolerate IHD
 - SLEDD (Sustained Low Efficiency (Daily) Dialysis) performed initially
- Tracheostomy performed due to prolonged ventilation

CASE 2.0 CLOSED

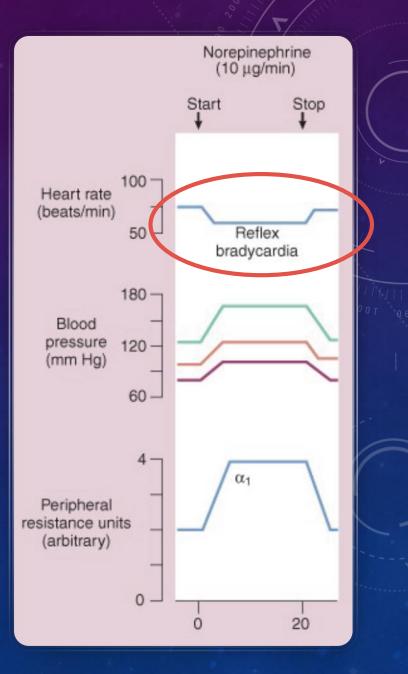
- Patient remains hemodynamically stable, but very weak
- Vasopressors are being weaned off and are only being used intermittently
- Prognosis does not foresee patient leaving the hospital in her lifetime


THE "MEDICAL" SIDE OF THINGS

- Continuous blood pressure monitoring REQUIRED for use of inotropes and vasopressors
 - Done through an arterial line setup
- Administration of inotropes and vasopressors done through a central venous catheter
- Administer the lowest possible dose for the shortest period of time to minimize ADRs

SIDE EFFECTS OF VASOPRESSORS

- Increased myocardial oxygen demand
- Ventricular arrhythmia
- Contraction band necrosis (in cardiogenic shock)
- Infarct expansion (in cardiogenic shock)
- Increased mortality (CHF)
- Lactic acidosis (with NE post-cardiopulmonary bypass)
- Reflex bradycardia with NE ($\alpha_1 > \beta_1 > \beta_2$)
- Dermal necrosis


SELECT TREATMENT ALGORITHMS

• Bradyarrhythmia

- 1st line Dobutamine (β 1> β 2> α 1), isoproterenol (β 1= β 2), dopamine (DA> β 1> α 1> β 2)
 - Use if atropine ineffective
 - May be used until pacemaker can be installed
 - Can be used in Torsades de Pointes

SIDE EFFECTS OF VASOPRESSORS

- Increased myocardial oxygen demand
- Ventricular arrhythmia
- Contraction band necrosis (in cardiogenic shock)
- Infarct expansion (in cardiogenic shock)
- Increased mortality (CHF)
- Lactic acidosis (with NE post-cardiopulmonary bypass)
- Reflex bradycardia with NE ($\alpha_1 > \beta_1 > \beta_2$)
- Dermal necrosis

PHENTOLAMINE

- Phentolamine is an antidote for extravasation of epinephrine and norepinephrine
 - Dermal necrosis occurs in tissue due to intense vasoconstriction
 - Phentolamine injected around the area to minimize the spread of necrosis
 - Mechanism of action: Complete (non-selective) α-blockade

SELECT TREATMENT ALGORITHMS

- Cardiogenic Shock complicating Acute MI
 - 1st line Dobutamine ($\beta_1 > \beta_2 > \alpha_1$) if no shock symptoms and SBP 70-100
 - 1st line Dopamine (DA> β_1 > α_1 > β_2) if shock symptoms and SBP 70-100
 - These agents AVOID excessive α_1 stimulation which can lead to end-organ ischemia
 - They maximize the use of inotropy
 - 2nd line Use NE when SBP < 70 or as add-on therapy with inadequate response to 1st line agents
 - 2nd line Vasopressin may be used in late shock/NE-resistant shock
 - Vasopressin levels are high during early shock but deplete with time

SELECT TREATMENT ALGORITHMS

- Heart Failure
 - 1st line Avoid vasopressors!
 - Diminished peripheral perfusion, pulse pressure and worsening kidney function (avoid $\alpha_{1})$
 - High SVR despite hypotension (avoid α_1)
 - Positive inotropes increase mortality (avoid β_1)
 - Refractory HF Dobutamine (β1> β2> α1), dopamine (DA> β1>A1> β2), milrinone (PDE3i = vasodilation in vascular smooth muscle + inotropy)
 - Decreases afterload, increases force of contractility

SUMMARY

- Inotrope = increase HR and contractility
- Vasopressor = constriction of vessels
- MOA: α or β agonism leading to vasoconstriction or inotropy
- $CO = SV \times HR$
- Ventilate, Infuse, Pump
- Least amount of inotropes vasopressors for the shortest period of time

THE END

THANK YOU FOR ATTENDING STUDENT ROUNDS MAY-JUNE 2017

SINCERELY,

Jillian Belanger

and

Jonathan Gbedemah

METHYLENE BLUE??

- Hypotension can be present in the peri-operative period
 - Can be partially due to the effects of endothelial nitric oxide synthase (eNOS)
- Methylene blue directly inhibits eNOS
 - Prevents the synthesis of nitric oxide which is vasodilatory
 - Also blocks production of cGMP which is a pro-vasodilatory molecule
- Administered as a single dose at 1.5 2 mg/kg
- Use is unsupported in septic shock

MILRINONE

- Phosphodiesterase 3 (PDE3) enzymes are located largely in the heart
 - PDE3 works to decrease the amount of cAMP in the heart
 - cAMP causes increased contractility
 - Thus, PDE3Is inhibit the breakdown of cAMP leading to increased contractility
- Used as inotropic support in CHF
- Given as a loading dose 50 µg/kg (dependent on renal function) plus a maintenance dose

TO DO

- Comb through presi and change all alpha/A and beta/B to symbols
- Change order of slides

METABOLISM OF INOTROPES AND VASOPRESSORS

- Endogenous inotropes and vasopressors are metabolized by:
 - Catechol-O-Methyltransferase (COMT)
 - Monoamine oxidase (MAO)
- Thus, theoretical interactions exist between their use and COMT inhibitors (i.e. entacapone) and MAO inhibitors (i.e. phenelzine (Nardil) and selegiline) due to decreased clearance
 - Small studies have found that NE + entacapone shows no increased effect on BP
 - One case of ventricular tachycardia
 - Other small studies found that NE + phenelzine have no increase in BP

WHY IS NOREPINEPHRINE 1ST LINE IN SEPTIC SHOCK?

- NE has A1 effects + modest B1 leading to increased SVR and maintaining CO
- Compared to epinephrine, NE has decreased rate of arrhythmia as well as better effects on serum lactate and splanchnic blood flow
- Compared to dopamine, NE has less death

SUGGESTIONS

- Outline for presentation
 - Graphically outline what I will be presenting
 - Ensure all points are hit
- GRAPHICS (large)
- Cases
 - Use overlap graph in cases to allow for explanation of why certain pressors were used
 - PB
 - Dob/dop
 - 23 Bed
- Questions to ponder (bridging slides)